Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 913: 174619, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748768

RESUMO

In some chronic primary pain conditions such as temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS), mild or chronic stress enhances pain. TMD and FMS often occur together, but the underlying mechanisms are unclear. The purpose of this study was to investigate the role of cholecystokinin (CCK) in the spinal cord in somatic hyperalgesia induced by orofacial inflammation combined with stress. Somatic hyperalgesia was detected by the thermal withdrawal latency and mechanical withdrawal threshold. The expression of CCK1 receptors, CCK2 receptors, ERK1/2 and p-ERK1/2 in the spinal cord was examined by Western blot. After the stimulation of orofacial inflammation combined with 3 day forced swim, the expression of CCK2 receptors and p-ERK1/2 protein in the L4-L5 spinal dorsal horn increased significantly, while the expression of CCK1 receptors and ERK1/2 protein remained unchanged. Intrathecal injection of the CCK2 receptor antagonist YM-022 or mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD98059 blocked somatic hyperalgesia induced by orofacial inflammation combined with stress. Intrathecal administration of the MEK inhibitor blocked somatic sensitization caused by the CCK receptor agonist CCK8. The CCK2 receptor antagonist YM-022 significantly reduced the expression of p-ERK1/2. These data indicate that upregulation of CCK2 receptors through the MAPK pathway contributes to somatic hyperalgesia in this comorbid pain model. Thus, CCK2 receptors and MAPK pathway may be potential targets for the treatment of TMD comorbid with FMS.


Assuntos
Colecistocinina/metabolismo , Dor Crônica/imunologia , Dor Facial/imunologia , Hiperalgesia/imunologia , Estresse Psicológico/complicações , Animais , Dor Crônica/patologia , Modelos Animais de Doenças , Dor Facial/patologia , Feminino , Humanos , Hiperalgesia/patologia , Inflamação/imunologia , Inflamação/patologia , Ratos , Ratos Sprague-Dawley , Receptor de Colecistocinina B/metabolismo , Corno Dorsal da Medula Espinal/imunologia , Corno Dorsal da Medula Espinal/patologia , Estresse Psicológico/imunologia , Estresse Psicológico/psicologia
2.
J Immunol Res ; 2021: 7377685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485537

RESUMO

The aim of this study was to explore the correlation between intraoperative hyperalgesia of the second eye and the dynamic changes of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß levels in aqueous humor (AH) of the second eye and whole blood after the first eye cataract surgery. A rabbit model of monocular phacoemulsification was established by administration of 0.3% levofloxacin. Whole blood and AH samples from non-surgical eyes in the experimental group (n =25) and second eye in the blank control group (n =15) were obtained and corneal sensitivity was examined after surgery (1, 3, 7, 14, and 21 days postoperatively). TNF-α and IL-1ß levels in AH and TNF-α mRNA and IL-1ß mRNA levels in whole blood were measured. In a clinical study, 30 patients who underwent bilateral phacoemulsification within 1 month were divided into six groups in accordance with the operation intervals (1, 3, 7, 10, 14, and 21days). TNF-α and IL-1ß levels in AH were measured at the beginning of surgery and intraoperative pain was assessed immediately after surgery. Corneal sensitivity (F =244.910, P <0.05), TNF-α and IL-1ß levels in AH (F =184.200, 82.900, P <0.05) of non-surgical eyes and in whole blood (F =272.800, 193.530, P <0.05) in the experimental group were significantly higher than the baseline levels after phacoemulsification. In the clinical study, NRS scores of second eye surgery were higher than those of the first eye(P =0.0025) and 19 (63.3%) patients reported more pain during the second eye surgery. TNF-α and IL-1ß concentrations in AH of the second eye were significantly higher than those of the first eye (F =123.60, P <0.05; F =59.60, P <0.05). In conclusion, within 1 month after the first eye phacoemulsification, higher pain sensitivity (hyperalgesia) exists in the second eye, which may be related to dynamic changes in TNF-α, IL-1ß levels in AH or whole blood.


Assuntos
Catarata , Hiperalgesia/imunologia , Facoemulsificação/efeitos adversos , Complicações Pós-Operatórias/imunologia , Animais , Humor Aquoso/metabolismo , Modelos Animais de Doenças , Humanos , Hiperalgesia/sangue , Hiperalgesia/diagnóstico , Hiperalgesia/patologia , Interleucina-1beta/análise , Interleucina-1beta/metabolismo , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/patologia , Coelhos , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/imunologia
3.
Int Immunopharmacol ; 98: 107882, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34182245

RESUMO

Daphnetin (7, 8-dihydroxycoumarin, DAPH), a coumarin derivative isolated from Daphne odora var., recently draws much more attention as a promising drug candidate to treat neuroinflammatory diseases due to its protective effects against neuroinflammation. However, itscontribution to chronic inflammatory pain is largely unknown. In the current work, we investigated the effects of DAPH in a murine model of inflammatory pain induced by complete Freund's adjuvant (CFA) and its possible underlying mechanisms. Our results showed that DAPH treatment significantly attenuated mechanical allodynia provoked by CFA. A profound inhibition of spinal glial activation, followed by attenuated expression levels of spinal pro-inflammatory cytokines, was observed in DAPH-treated inflammatory pain mice. Further study demonstrated that DAPH mediated negative regulation of spinal NF-κB pathway, as well as its preferential activation of Nrf2/HO-1 signaling pathway in inflammatory pain mice. This study, for the first time, indicated that DAPH might preventthe development of mechanical allodynia in mice with inflammatory pain. And more importantly, these data provide evidence for the potential application of DAPH in the treatment of chronic inflammatory pain.


Assuntos
Dor Crônica/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Umbeliferonas/farmacologia , Animais , Dor Crônica/imunologia , Dor Crônica/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/imunologia , Heme Oxigenase-1/metabolismo , Humanos , Hiperalgesia/imunologia , Hiperalgesia/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/imunologia , Neuroglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Dor/imunologia , Dor/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia , Umbeliferonas/uso terapêutico
4.
Neurosci Lett ; 757: 135977, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34023413

RESUMO

BACKGROUND: Changes in inflammatory cytokine levels contribute to the induction and maintenance of neuropathic pain. We have shown that external low intensity focused ultrasound (liFUS) reduces allodynia in a common peroneal nerve injury (CPNI). Here, we investigate an underlying mechanism of action for this treatment and measure the effect of liFUS on inflammatory markers. METHODS: Male rats were divided into four groups: CPNI/liFUS, CPNI/shamliFUS, shamCPNI/liFUS, and shamCPNI/shamliFUS. Mechanical nociceptive thresholds were measured using Von Frey filaments (VFF) to confirm the absence/presence of allodynia at baseline, after CPNI, and after liFUS. Commercial microarray and ELISA assays were used to assess cytokine expression in the treated L5 dorsal root ganglion (DRG) and dorsal horn (DH) tissue 24 and 72 h after liFUS. RESULTS: VFF thresholds were significantly reduced following CPNI in both groups that received the injury (p < 0.001). After liFUS, only the CPNI/liFUS cohort showed a significant increase in mechanical thresholds (p < 0.001). CPNI significantly increased TNFa, IL6, CNTF, IL1b (p < 0.05 for all) levels in the DRG and DH, compared to baseline, consistent with previous work in sciatic nerve injury. LiFUS in CPNI rats resulted in a decrease in these cytokines in DRG 72 h post-therapy (TNFa, IL6, CNTF and IL1b, p < 0.001). In the DH, IL1b, CNTF, and TNFa (p < 0.05 for all) decreased 72 h after liFUS. CONCLUSION: We have demonstrated that liFUS modifies inflammatory cytokines in both DRG and DH in CPNI rats. These data provide evidence that liFUS, reverses the allodynic phenotype, in part, by altering inflammatory cytokine pathways.


Assuntos
Hiperalgesia/terapia , Neuralgia/terapia , Traumatismos dos Nervos Periféricos/complicações , Terapia por Ultrassom/métodos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/imunologia , Masculino , Neuralgia/diagnóstico , Neuralgia/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/terapia , Nervo Fibular/lesões , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Corno Dorsal da Medula Espinal/imunologia , Corno Dorsal da Medula Espinal/metabolismo , Ondas Ultrassônicas
5.
Mol Pain ; 17: 1744806921997206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829907

RESUMO

Beta 2 adrenergic receptor (ß2 AR) activation in the central and peripheral nervous system has been implicated in nociceptive processing in acute and chronic pain settings with anti-inflammatory and anti-allodynic effects of ß2-AR mimetics reported in several pain states. In the current study, we examined the therapeutic efficacy of the ß2-AR agonist clenbuterol in a rat model of persistent postsurgical hypersensitivity induced by disruption of descending noradrenergic signaling in rats with plantar incision. We used growth curve modeling of ipsilateral mechanical paw withdrawal thresholds following incision to examine effects of treatment on postoperative trajectories. Depletion of spinal noradrenergic neurons delayed recovery of hypersensitivity following incision evident as a flattened slope compared to non-depleted rats (-1.8 g/day with 95% CI -2.4 to -1.085, p < 0.0001). Chronic administration of clenbuterol reduced mechanical hypersensitivity evident as a greater initial intercept in noradrenergic depleted (6.2 g with 95% CI 1.6 to 10.8, p = 0.013) and non-depleted rats (5.4 g with 95% CI 1.2 to 9.6, p = 0.018) with plantar incision compared to vehicle treated rats. Despite a persistent reduction in mechanical hypersensitivity, clenbuterol did not alter the slope of recovery when modeled over several days (p = 0.053) or five weeks in depleted rats (p = 0.64). Systemic clenbuterol suppressed the enhanced microglial activation in depleted rats and reduced the density of macrophage at the site of incision. Direct spinal infusion of clenbuterol failed to reduce mechanical hypersensitivity in depleted rats with incision suggesting that beneficial effects of ß2-AR stimulation in this model are largely peripherally mediated. Lastly, we examined ß2-AR distribution in the spinal cord and skin using in-situ hybridization and IHC. These data add to our understanding of the role of ß2-ARs in the nervous system on hypersensitivity after surgical incision and extend previously observed anti-inflammatory actions of ß2-AR agonists to models of surgical injury.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Clembuterol/uso terapêutico , Hiperalgesia/tratamento farmacológico , Imunidade/efeitos dos fármacos , Microglia/efeitos dos fármacos , Dor Pós-Operatória/tratamento farmacológico , Ferida Cirúrgica/complicações , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Clembuterol/farmacologia , Hiperalgesia/etiologia , Hiperalgesia/imunologia , Masculino , Neurônios/efeitos dos fármacos , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/imunologia , Ratos , Ratos Sprague-Dawley
6.
J Pain ; 22(10): 1146-1179, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33892151

RESUMO

During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models. We examined a time course of the response including acute (2 hours) and longer term (2 day) time points after peripheral injury representing the early onset and instantiation of hyperalgesic processes. From this analysis, we identify a key population of superficial dorsal spinal cord neurons marked by somatotopic upregulation of the opioid neuropeptide precursor prodynorphin, and 2 receptors: the neurokinin 1 receptor, and anaplastic lymphoma kinase. These alterations occur specifically in the glutamatergic subpopulation of superficial dynorphinergic neurons. In addition to specific neuronal gene regulation, both models showed induction of broad transcriptional signatures for tissue remodeling, synaptic rearrangement, and immune signaling defined by complement and interferon induction. These signatures were predominantly induced ipsilateral to tissue injury, implying linkage to primary afferent drive. We present a comprehensive set of gene regulatory events across 2 models that can be targeted for the development of non-opioid analgesics. PERSPECTIVE: The deadly impact of the opioid crisis and the need to replace morphine and other opioids in clinical practice is well recognized. Embedded within this research is an overarching goal of obtaining foundational knowledge from transcriptomics to search for non-opioid analgesic targets. Developing such analgesics would address unmet clinical needs.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Dor Crônica/metabolismo , Hiperalgesia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células do Corno Posterior/metabolismo , Transcriptoma/fisiologia , Animais , Dor Crônica/imunologia , Modelos Animais de Doenças , Hiperalgesia/imunologia , Doenças Neuroinflamatórias/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Células do Corno Posterior/imunologia , Ratos , Análise de Sequência de RNA
7.
Behav Brain Res ; 402: 113113, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33412227

RESUMO

Early-life stress (ELS) is a high-risk factor for the development of chronic visceral pain in adulthood. Emerging evidence suggests that mast cells play a key role in the development of visceral hypersensitivity through interaction with neurons. The sensitization of corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus (PVN) plays a pivotal role in the pathogenesis of visceral pain. However, the precise mechanism by which mast cells and CRF neurons interact in the PVN in the pathogenesis of visceral hypersensitivity remains elusive. In the present study, we used neonatal maternal separation (MS), an ELS model, and observed that neonatal MS induced visceral hypersensitivity and triggered PVN mast cell activation in adult rats, which was repressed by intra-PVN infusion of the mast cell stabilizer disodium cromoglycate (cromolyn). Wild-type (WT) mice but not mast cell-deficient KitW-sh/W-sh mice that had experienced neonatal MS exhibited chronic visceral hypersensitivity. MS was associated with an increase in the expression of proinflammatory mediators, the number of CRF+ cells and CRF protein in the PVN, which was prevented by intra-PVN infusion of cromolyn. Furthermore, we demonstrated that intra-PVN infusion of the mast degranulator compound 48/80 significantly induced mast cell activation, resulting in proinflammatory mediator release, CRF neuronal sensitization, and visceral hypersensitivity, which was suppressed by cromolyn. Overall, our findings demonstrated that neonatal MS induces the activation of PVN mast cells, which secrete numerous proinflammatory mediators that may participate in neighboring CRF neuronal activity, ultimately directly inducing visceral hypersensitivity in adulthood.


Assuntos
Hiperalgesia , Mastócitos , Privação Materna , Núcleo Hipotalâmico Paraventricular , Estresse Psicológico , Dor Visceral , Animais , Masculino , Camundongos , Ratos , Animais Recém-Nascidos , Modelos Animais de Doenças , Hiperalgesia/etiologia , Hiperalgesia/imunologia , Hiperalgesia/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos Transgênicos , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/imunologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Sprague-Dawley , Dor Visceral/imunologia , Dor Visceral/metabolismo
8.
J Pain ; 22(3): 322-343, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33227508

RESUMO

Pain is a common but potentially debilitating symptom, often requiring complex management strategies. To understand the molecular dynamics of peripheral inflammation and nociceptive pain, we investigated longitudinal changes in behavior, tissue structure, and transcriptomic profiles in the rat carrageenan-induced peripheral inflammation model. Sequential changes in the number of differentially expressed genes are consistent with temporal recruitment of key leukocyte populations, mainly neutrophils and macrophages with each wave being preceded by upregulation of the cell-specific chemoattractants, Cxcl1 and Cxcl2, and Ccl2 and Ccl7, respectively. We defined 12 temporal gene clusters based on expression pattern. Within the patterns we extracted genes comprising the inflammatory secretome and others related to nociceptive tissue remodeling and to sensory perception of pain. Structural tissue changes, involving upregulation of multiple collagens occurred as soon as 1-hour postinjection, consistent with inflammatory tissue remodeling. Inflammatory expression profiling revealed a broad-spectrum, temporally orchestrated molecular and cellular recruitment process. The results provide numerous potential targets for modulation of pain and inflammation. PERSPECTIVE: This study investigates the highly orchestrated biological response during tissue inflammation with precise assessment of molecular dynamics at the transcriptional level. The results identify transcriptional changes that define an evolving inflammatory state in rats. This study provides foundational data for identifying markers of, and potential treatments for, inflammation and pain in patients.


Assuntos
Perfilação da Expressão Gênica , Hiperalgesia/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Dor Nociceptiva/imunologia , Secretoma/imunologia , Animais , Carragenina/farmacologia , Modelos Animais de Doenças , , Hiperalgesia/induzido quimicamente , Inflamação/induzido quimicamente , Masculino , Dor Nociceptiva/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA
9.
Naunyn Schmiedebergs Arch Pharmacol ; 394(2): 299-306, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32970203

RESUMO

Mutations within the SCN11A gene which encodes the voltage-gated sodium channel NaV1.9 mainly expressed in small fiber sensory neurons have been associated with neuropathic disorders; however, suitable medications have not been fully investigated. To develop drug therapies against NaV1.9-related neuropathic pain, we aimed to establish a novel model using mice carrying the Scn11a p.R222S mutation initially identified in patients with familial episodic limb pain that is characterized by paroxysmal pain induced by fatigue or bad weather conditions. We investigated the influence of cold exposure (4 °C, overnight) on the behavioral and biochemical phenotypes of Scn11a p.R222S mutant (R222S) and wild type C57BL/6N (WT) mice. We also tested the effects of acetaminophen (125, 250 mg/kg, perorally, p.o.) and traditional Japanese medicine, goshajinkigan (0.5 or 1.0 g/kg, p.o.), which are analgesic drugs prescribed to patients with neuropathic pain, in this model of cold-induced mechanical allodynia in R222S mice.Cold-exposed R222S mice exhibited enhanced mechanical allodynia and thermal hypersensitivity compared with WT mice. The decrease of the mechanical withdrawal threshold in R222S mice was reversible 24 h after housing at room temperature. There was no significant change in the levels of interleukin-1ß, interleukin-6, tumor necrosis factor-α, or interferon-γ in the plasma or spinal cords of WT and R222S mice after cold exposure. Both acetaminophen (250 mg/kg) and goshajinkigan (1.0 g/kg) significantly attenuated mechanical allodynia in R222S mice. The model of cold-induced mechanical allodynia in mice with the Scn11a p.R222S mutation is novel and useful for evaluating analgesic drugs for intractable neuropathies related to NaV1.9.


Assuntos
Modelos Animais de Doenças , Hiperalgesia , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Neuralgia , Acetaminofen/uso terapêutico , Analgésicos/uso terapêutico , Animais , Temperatura Baixa , Citocinas/sangue , Citocinas/imunologia , Medicamentos de Ervas Chinesas/uso terapêutico , Membro Posterior/patologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Hiperalgesia/imunologia , Hiperalgesia/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação de Sentido Incorreto , Neuralgia/tratamento farmacológico , Neuralgia/genética , Neuralgia/imunologia , Neuralgia/patologia , Medula Espinal/imunologia , Tato
10.
J Neuroinflammation ; 17(1): 179, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517772

RESUMO

BACKGROUND: Though it is well-known that a high-salt diet (HSD) is associated with many chronic diseases, the effects of long-term high-salt intake on physiological functions and homeostasis remain elusive. In this study, we investigated whether and how an HSD affects mouse nociceptive thresholds, and myeloid cell trafficking and activation. METHODS: Healthy C57BL/6 male and female mice were fed an HSD (containing 4% NaCl in chow and 1% NaCl in water) from the time of weaning for 3 to 4 months. Circulating monocytes, nerve macrophages, spinal microglia, and associated inflammatory responses were scrutinized using flow cytometry, immunohistochemistry, and quantitative real-time polymerase chain reaction (qPCR) approaches. Mouse pain sensitivity to mechanical stimuli was monitored with von Frey tests along the experimental duration. RESULTS: Mice on an HSD have reduced mechanical thresholds. They feel more pain than those on a normal diet (ND), e.g., regular laboratory chow (0.3% NaCl in chow). An HSD induced not only a remarkable expansion of circulating monocytes, CCR2+Ly6Chi inflammatory monocytes in particular, but also an accumulation of CD11b+F4/80+ macrophages in the peripheral nerves and an activation of Iba-1+ spinal microglia. Replacing an HSD with a ND was unable to reverse the HSD-induced mechanical hypersensitivity or rescue the altered immune responses. However, treating HSD-fed mice with a chemokine receptor CCR2 antagonist effectively normalized the pain thresholds and immune cell profile in the periphery and spinal cord. An HSD failed to alter pain thresholds and myeloid cell activation in CCR2-deficient mice. Spinal microglial activation is required for HSD-induced mechanical hypersensitivity in male, but not in female mice. CONCLUSION: Overall, this study provides evidence that an HSD has a long-term impact on physiological function. CCR2-mediated cellular response, including myeloid cell trafficking and associated inflammation, plays pivotal roles in salt-dietary modulation of pain sensitivity.


Assuntos
Quimiotaxia de Leucócito/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Receptores CCR2/metabolismo , Cloreto de Sódio na Dieta/toxicidade , Animais , Quimiotaxia de Leucócito/imunologia , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/imunologia , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Limiar da Dor/fisiologia
11.
Kaohsiung J Med Sci ; 36(9): 712-720, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32436368

RESUMO

To explore the mechanism of microRNA-155 (miR-155) deficiency, protecting against experimental autoimmune prostatitis (EAP) in a toll-like receptor 4 (TLR4)-dependent manner. After wild-type (WT) and miR-155-/- mice were injected with complete Freund's adjuvant and prostate antigen to establish EAP model, half were randomly selected for injection with lipopolysaccharide (LPS, a TLR4 ligand). The following experiments were then performed: von Frey filaments, hematoxylin-eosin (HE) staining, real time quantitative polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). And the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the level of Malondialdehyde (MDA) were detected by corresponding kits.miR-155-/- mice with prostatitis exhibited the attenuated pelvic tactile allodynia/hyperalgesia and the suppressed TLR4/nuclear factor-kappa B (NF-κB) pathway as compared with the WT mice with prostatitis. In addition, LPS enhanced the upregulation of miR-155 and the activation of the TLR4/NF-κB pathway in the prostatic tissues of WT mice with EAP. Furthermore, prostatitis mice had aggravated inflammation scores accompanying the increased interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, interferon-γ, IL-12, and MDA in prostatic tissues with the decreased IL-10, SOD and GSH-Px, and the unaltered IL-4. Compared with the mice from the WT + EAP group and the miR-155-/- + EAP + LPS group, mice from the miR-155-/- + EAP group had decreased inflammation and oxidative stress. miR-155 deficiency ameliorated pelvic tactile allodynia/hyperalgesia in EAP mice and improved inflammation and oxidative stress in prostatic tissues in a TLR4-dependent manner involving NF-κB activation, thereby exerting a therapeutic effect in chronic prostatitis treatment.


Assuntos
Doenças Autoimunes/genética , Hiperalgesia/genética , MicroRNAs/genética , NF-kappa B/genética , Prostatite/genética , Receptor 4 Toll-Like/genética , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Doenças Autoimunes/prevenção & controle , Modelos Animais de Doenças , Adjuvante de Freund/administração & dosagem , Regulação da Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/imunologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/imunologia , Hiperalgesia/prevenção & controle , Interferon gama/genética , Interferon gama/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Masculino , Malondialdeído/imunologia , Malondialdeído/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/imunologia , NF-kappa B/imunologia , Estresse Oxidativo , Antígeno Prostático Específico/administração & dosagem , Prostatite/induzido quimicamente , Prostatite/imunologia , Prostatite/prevenção & controle , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
12.
Int J Mol Sci ; 21(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392831

RESUMO

Inflammatory pain sensation is an important symptom which protects the body against additional tissue damage and promotes healing. Discovering long-term and effective treatments for pain remains crucial in providing efficient healthcare. Electroacupuncture (EA) is a successful therapy used for pain relief. We aimed to investigate effects and mechanisms of Complete Freund's Adjuvant (CFA)-inducing inflammatory pain in the cerebellum, and the inhibition of this inflammatory hyperalgesia using EA at Zusanli acupoint (ST36). The results display a significant increase in mechanical and thermal sensitivities in the CFA and CFA + SHAM groups, which was significantly reduced in the CFA+EA and CFA + KO groups. This evidence was substantiated in the protein levels observed using immunoblotting, and presented with significant escalations after CFA inducing inflammatory hyperalgesia in CFA and CFA + SHAM groups. Then, they were significantly attenuated by EA in the CFA + EA group. Furthermore, the CFA + transient receptor vanilloid member 1 (TRPV1)-/- group indicated similar significant decreases of protein expression. Additionally, a concomitant overexpression in lobule VIa was also observed in immunofluorescence. These consequences suggest that CFA-induced inflammatory pain provokes modifications in cerebellum lobules V, VIa and VII, which can subsequently be regulated by EA treatment at the ST36 through its action on TRPV1 and related molecular pathways.


Assuntos
Cerebelo/metabolismo , Eletroacupuntura/métodos , Adjuvante de Freund/efeitos adversos , Hiperalgesia/terapia , Canais de Cátion TRPV/metabolismo , Pontos de Acupuntura , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hiperalgesia/genética , Hiperalgesia/imunologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Transdução de Sinais , Canais de Cátion TRPV/genética , Resultado do Tratamento
13.
Eur J Pharmacol ; 880: 173171, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32437743

RESUMO

Cathepsin S (CatS) is a cysteine protease found in lysosomes of hematopoietic and microglial cells and in secreted form in the extracellular space. While CatS has been shown to contribute significantly to neuropathic pain, the precise mechanisms remain unclear. In this report, we describe JNJ-39641160, a novel non-covalent, potent, selective and orally-available CatS inhibitor that is peripherally restricted (non-CNS penetrant) and may represent an innovative class of immunosuppressive and analgesic compounds and tools useful toward investigating peripheral mechanisms of CatS in neuropathic pain. In C57BL/6 mice, JNJ-39641160 dose-dependently blocked the proteolysis of the invariant chain, and inhibited both T-cell activation and antibody production to a vaccine antigen. In the spared nerve injury (SNI) model of chronic neuropathic pain, in which T-cell activation has previously been demonstrated to be a prerequisite for the development of pain hypersensitivity, JNJ-39641160 fully reversed tactile allodynia in wild-type mice but was completely ineffective in the same model in CatS knockout mice (which exhibited a delayed onset in allodynia). By contrast, in the acute mild thermal injury (MTI) model, JNJ-39641160 only weakly attenuated allodynia at the highest dose tested. These findings support the hypothesis that blockade of peripheral CatS alone is sufficient to fully reverse allodynia following peripheral nerve injury and suggest that the mechanism of action likely involves interruption of T-cell activation and peripheral cytokine release. In addition, they provide important insights toward the development of selective CatS inhibitors for the treatment of neuropathic pain in humans.


Assuntos
Analgésicos/uso terapêutico , Catepsinas/antagonistas & inibidores , Hiperalgesia/tratamento farmacológico , Imunossupressores/uso terapêutico , Neuralgia/tratamento farmacológico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Encéfalo/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Linhagem Celular , Citocinas/imunologia , Temperatura Alta , Humanos , Hiperalgesia/imunologia , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Imunossupressores/farmacocinética , Imunossupressores/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Inibidores de Proteases/farmacocinética , Inibidores de Proteases/farmacologia , Nervo Isquiático/lesões , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Toxoide Tetânico/administração & dosagem , Tato
14.
J Neural Transm (Vienna) ; 127(4): 505-525, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32239353

RESUMO

The dorsal horns of the spinal cord and the trigeminal nuclei in the brainstem contain neuron populations that are critical to process sensory information. Neurons in these areas are highly heterogeneous in their morphology, molecular phenotype and intrinsic properties, making it difficult to identify functionally distinct cell populations, and to determine how these are engaged in pathophysiological conditions. There is a growing consensus concerning the classification of neuron populations, based on transcriptomic and transductomic analyses of the dorsal horn. These approaches have led to the discovery of several molecularly defined cell types that have been implicated in cutaneous mechanical allodynia, a highly prevalent and difficult-to-treat symptom of chronic pain, in which touch becomes painful. The main objective of this review is to provide a contemporary view of dorsal horn neuronal populations, and describe recent advances in our understanding of on how they participate in cutaneous mechanical allodynia.


Assuntos
Dor Crônica , Hiperalgesia , Inflamação , Neuralgia , Células do Corno Posterior , Animais , Dor Crônica/imunologia , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Hiperalgesia/imunologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Neuralgia/imunologia , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Células do Corno Posterior/classificação , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo
15.
Eur J Pharmacol ; 879: 173054, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32145326

RESUMO

We have previously shown that endogenous adenosine 5'-triphosphate (ATP), via P2X3 and P2X2/3 receptors, plays an essential role in carrageenan-induced articular hyperalgesia model in rats' knee joint. In the present study, we used the rat knee joint incapacitation test, Enzyme-Linked Immunosorbent Assay (ELISA), and myeloperoxidase enzyme activity assay, to test the hypothesis that the activation of P2X3 and P2X2/3 receptors by their agonist induces articular hyperalgesia mediated by the inflammatory mediators bradykinin, prostaglandin, sympathomimetic amines, pro-inflammatory cytokines and by neutrophil migration. We also tested the hypothesis that the activation of P2X3 and P2X2/3 receptors contributes to the articular hyperalgesia induced by the inflammatory mediators belonging to carrageenan inflammatory cascade. The non-selective P2X3 and P2X2/3 receptors agonist αß-meATP induced a dose-dependent articular hyperalgesia, which was significantly reduced by the selective antagonists for P2X3 and P2X2/3 receptors (A-317491), bradykinin B1- (DALBK) or B2-receptors (bradyzide), ß1-(atenolol) or ß2-adrenoceptors (ICI-118,551), by the pre-treatment with cyclooxygenase inhibitor (indomethacin) or with the nonspecific selectin inhibitor (Fucoidan). αß-meATP induced the release of pro-inflammatory cytokines TNFα, IL-1ß, IL-6, and CINC-1, as well as the neutrophil migration. Moreover, the co-administration of A-317491 significantly reduced the articular hyperalgesia induced by bradykinin, prostaglandin E2 (PGE2), and dopamine. These findings suggest that peripheral P2X3 and P2X2/3 receptors activation induces articular hyperalgesia by an indirect sensitization of the primary afferent nociceptor of rats' knee joint through the release of inflammatory mediators. Further, they also indicate that the activation of these purinergic receptors by endogenous ATP mediates the bradykinin-, PGE2-, and dopamine-induced articular hyperalgesia.


Assuntos
Hiperalgesia/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Trifosfato de Adenosina/análogos & derivados , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Bradicinina , Citocinas/imunologia , Dinoprostona , Dopamina , Hiperalgesia/induzido quimicamente , Hiperalgesia/imunologia , Articulação do Joelho/imunologia , Articulação do Joelho/metabolismo , Masculino , Neutrófilos/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/uso terapêutico , Compostos Policíclicos/farmacologia , Compostos Policíclicos/uso terapêutico , Agonistas do Receptor Purinérgico P2X , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Ratos Wistar
16.
Eur J Pharmacol ; 872: 172972, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32006559

RESUMO

Cisplatin is used as a first line therapy in treating cancers. However, its use is often accompanied with the development of peripheral neuropathy. 6-Methoxyflavanone (6-MeOF) is a positive allosteric modulator at GABAA receptors and is known for attenuating diabetes-induced neuropathic pain. Neuropathy was induced in male Sprague-Dawley rats (150-250 g), via intraperitoneal injection of cisplatin (3 mg/kg) once a week for four consecutive weeks. 6-MeOF (25, 50 and 75 mg/kg, i.p) and gabapentin (75 mg/kg, i.p) were administered 30 min before each cisplatin injection. Static and dynamic allodynia were assessed using von Frey filaments and cotton buds. The anti-inflammatory activity was analyzed with plethysmometer. Body weights were also measured each week. The binding affinity of 6-MeOF with chloride channel, Cyclooxygenase-1 (COX-1) and Cyclooxygenase-2 (COX-2) was studied using docking approach. The in vitro COX-1 and COX-2 inhibitory effect of 6-MeOF was conducted with COX colorimetric assay. Administration of cisplatin for four consecutive weeks induced static (decreased paw withdrawal threshold; PWT) and dynamic allodynia (decreased paw withdrawal latency; PWL). Co-administration of 6-MeOF for four weeks significantly attenuated the cisplatin-induced expression of nocifensive behaviors observed as significant increase in PWT and PWL. Moreover, it also prevented the body weight loss induced by cisplatin administration. In silico studies depicted a good interaction of 6-MeOF with chloride ion channels and COX-1 and COX-2 enzymes. The in vitro study confirmed the inhibitory activity of 6-MeOF for COX-1 and COX-2. 6-MeOF may be effective in attenuating cisplatin-induced allodynia, probably through interaction with GABAergic receptors and reducing inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Cisplatino/efeitos adversos , Flavanonas/farmacologia , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Receptores de GABA-A/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/imunologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Flavanonas/química , Flavanonas/uso terapêutico , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/diagnóstico , Hiperalgesia/imunologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/imunologia , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neuralgia/induzido quimicamente , Neuralgia/diagnóstico , Neuralgia/imunologia , Ratos , Receptores de GABA-A/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
17.
J Ethnopharmacol ; 253: 112711, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32097698

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Oenothera rosea (Onagraceae), commonly known as "hierba del golpe" in Mexico, is an herbaceous plant widely used in Mexican traditional medicine for the treatment of pain and inflammation. AIM OF THE STUDY: The aim of this study was to assess the effect of extracts and compounds isolated from O. rosea in kaolin-carrageenan induced arthritis. MATERIALS AND METHODS: Hydroalcoholic extract from aerial parts of O. rosea was obtained and chemically separated in order to obtain OrEA and isolated compounds using column chromatography, HPLC, UPLC and NMR analysis. O. rosea extract and derivatives were tested on the kaolin/carrageenan (K/C) induced arthritis model on ICR mice. Knee inflammation and paw withdrawal threshold were assessed following intraarticular administration of kaolin and carrageenan (4% and 2%, respectively) and subsequent oral administration of O. rosea. TNF-α, IL-1ß, IL-6 and IL-10 levels from synovial capsule were measured using ELISA kits. NF-κB activity was also measured using the RAWBlue™ cell line. Finally, spleen and lungs were dissected to investigate body index. RESULTS: Oral administration of the O. rosea ethyl acetate fraction (25, 50 and 100 mg/kg) and isolated compounds (2 mg/kg) reduced the edema induced by kaolin/carrageenan, similar to the effect of methotrexate (1 mg/kg). Hyperalgesia but not allodynia was observed during this experiment. O. rosea derivatives reduced this behavior. The quantification of cytokines showed a reduction in TNF-α, IL-1ß and IL-6, as well as an increase of IL-10. NF-κB production was also reduced by administering O. rosea derivatives. Chemical analysis of O. rosea derivatives showed that the major compounds present in the ethyl acetate fraction were phenolic compounds. Gallic acid, quercetin glucoside and quercetin rhamnoside were separated and identified by UPLC-UV-MS, and myricetin glycoside and tamarixetin glucoside using 1H and 13C NMR. CONCLUSIONS: O. rosea produces different phenolic compounds capable of reducing the inflammation and secondary mechanical hyperalgesia produced by K/C administration. They also reduced proinflammatory cytokines and increased anti-inflammatory cytokines. Finally, NF-κB modulation was reduced by the administration of O. rosea. Therefore, O. rosea could be considered of interest in inflammatory and painful diseases.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Artrite/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Oenothera , Fenóis/uso terapêutico , Extratos Vegetais/uso terapêutico , Analgésicos/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Artrite/induzido quimicamente , Artrite/imunologia , Carragenina , Linhagem Celular , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Hiperalgesia/imunologia , Caulim , Camundongos Endogâmicos ICR , NF-kappa B/imunologia , Fenóis/análise , Fenóis/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Componentes Aéreos da Planta , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/imunologia
18.
Nat Commun ; 11(1): 264, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937758

RESUMO

Paralleling the activation of dorsal horn microglia after peripheral nerve injury is a significant expansion and proliferation of macrophages around injured sensory neurons in dorsal root ganglia (DRG). Here we demonstrate a critical contribution of DRG macrophages, but not those at the nerve injury site, to both the initiation and maintenance of the mechanical hypersensitivity that characterizes the neuropathic pain phenotype. In contrast to the reported sexual dimorphism in the microglial contribution to neuropathic pain, depletion of DRG macrophages reduces nerve injury-induced mechanical hypersensitivity and expansion of DRG macrophages in both male and female mice. However, fewer macrophages are induced in the female mice and deletion of colony-stimulating factor 1 from sensory neurons, which prevents nerve injury-induced microglial activation and proliferation, only reduces macrophage expansion in male mice. Finally, we demonstrate molecular cross-talk between axotomized sensory neurons and macrophages, revealing potential peripheral DRG targets for neuropathic pain management.


Assuntos
Gânglios Espinais/imunologia , Macrófagos/fisiologia , Neuralgia/imunologia , Animais , Comunicação Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Hiperalgesia/imunologia , Imunossupressores/farmacologia , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microglia/metabolismo , Microglia/fisiologia , Traumatismos dos Nervos Periféricos/imunologia , Gravidez , Células Receptoras Sensoriais/metabolismo , Fatores Sexuais , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia
19.
J Neuroinflammation ; 17(1): 3, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900220

RESUMO

Nerve injury-induced chronic pain has been an urgent problem for both public health and clinical practice. While transition to chronic pain is not an inevitable consequence of nerve injuries, the susceptibility/resilience factors and mechanisms for chronic neuropathic pain after nerve injuries still remain unknown. Current preclinical and clinical studies, with certain notable limitations, have shown that major histocompatibility complex class II-restricted T helper (Th) cells is an important trigger for nerve injury-induced chronic tactile allodynia, one of the most prevalent and intractable clinical symptoms of neuropathic pain. Moreover, the precise pathogenic neuroimmune interfaces for Th cells remain controversial, not to mention the detailed pathogenic mechanisms. In this review, depending on the biology of Th cells in a neuroimmunological perspective, we summarize what is currently known about Th cells as a trigger for chronic tactile allodynia after nerve injuries, with a focus on identifying what inconsistencies are evident. Then, we discuss how an interdisciplinary perspective would improve the understanding of Th cells as a trigger for chronic tactile allodynia after nerve injuries. Finally, we hope that the expected new findings in the near future would translate into new therapeutic strategies via targeting Th cells in the context of precision medicine to either prevent or reverse chronic neuropathic tactile allodynia.


Assuntos
Hiperalgesia/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Doença Crônica , Humanos , Hiperalgesia/patologia , Linfócitos T Auxiliares-Indutores/patologia
20.
Immunology ; 159(4): 413-428, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31919846

RESUMO

A growing body of evidence has indicated that the release of nociceptive factors, such as interleukins and chemokines, by activated immune and glial cells has crucial significance for neuropathic pain generation and maintenance. Moreover, changes in the production of nociceptive immune factors are associated with low opioid efficacy in the treatment of neuropathy. Recently, it has been suggested that CC chemokine receptor type 1 (CCR1) signaling is important for nociception. Our study provides evidence that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with significant up-regulation of endogenous CCR1 ligands, namely, CCL2, CCL3, CCL4, CCL6, CCL7 and CCL9 in the spinal cord and CCL2, CCL6, CCL7 and CCL9 in dorsal root ganglia (DRG). We showed that single and repeated intrathecal administration of J113863 (an antagonist of CCR1) attenuated mechanical and thermal hypersensitivity. Moreover, repeated administration of a CCR1 antagonist enhanced the analgesic properties of morphine and buprenorphine after CCI. Simultaneously, repeated administration of J113863 reduced the protein levels of IBA-1 in the spinal cord and MPO and CD4 in the DRG and, as a consequence, the level of pronociceptive factors, such as interleukin-1ß (IL-1ß), IL-6 and IL-18. The data obtained provide evidence that CCR1 blockade reduces hypersensitivity and increases opioid-induced analgesia through the modulation of neuroimmune interactions.


Assuntos
Analgésicos/farmacologia , Buprenorfina/farmacologia , Hiperalgesia/tratamento farmacológico , Morfina/farmacologia , Neuralgia/tratamento farmacológico , Receptores CCR1/imunologia , Xantenos/farmacologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Gânglios Espinais/fisiopatologia , Regulação da Expressão Gênica , Hiperalgesia/genética , Hiperalgesia/imunologia , Hiperalgesia/fisiopatologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Neuralgia/genética , Neuralgia/imunologia , Neuralgia/fisiopatologia , Nociceptividade/efeitos dos fármacos , Peroxidase/genética , Peroxidase/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Ratos , Ratos Wistar , Receptores CCR1/antagonistas & inibidores , Receptores CCR1/genética , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...